缩写名/全名 |
APPL COMPUT HARMON A
APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS |
||||||||||||||||
ISSN号 | 1063-5203 | ||||||||||||||||
研究方向 | 物理-物理:数学物理 | ||||||||||||||||
影响因子 | 2015:2.094, 2016:2.634, 2017:2.833, 2018:2.964, 2019:2.573, | ||||||||||||||||
出版国家 | UNITED STATES | ||||||||||||||||
出版周期 | Bimonthly | ||||||||||||||||
年文章数 | 66 | ||||||||||||||||
出版年份 | 1993 | ||||||||||||||||
是否OA | No | ||||||||||||||||
审稿周期(仅供参考) | 较慢,6-12周 来源Elsevier官网:平均22.9周 |
||||||||||||||||
录用比例 | 较易 | ||||||||||||||||
投稿链接 | http://ees.elsevier.com/acha/default.asp?acw=6012 | ||||||||||||||||
投稿官网 | http://www.journals.elsevier.com/applied-and-computational-harmonic-analysis/ | ||||||||||||||||
h-index | 77 | ||||||||||||||||
CiteScore |
|
||||||||||||||||
PubMed Central (PMC)链接 | http://www.ncbi.nlm.nih.gov/nlmcatalog?term=1063-5203%5BISSN%5D | ||||||||||||||||
中科院SCI期刊分区 ( 2018年新版本) |
|
||||||||||||||||
中科院SCI期刊分区 ( 2020年新版本) |
|
中国学者近期发表的论文 | |
1. | An enhancement algorithm for cyclic adaptive Fourier decomposition Author: Tao Qian, Jianzhong Wang, Weixiong Mai Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, Vol., , DOI:10.1016/j.acha.2019.01.003 DOI |
2. | Distributed kernel gradient descent algorithm for minimum error entropy principle Author: Ting Hu, Qiang Wu, Ding-Xuan Zhou Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2019, Vol., , DOI:10.1016/j.acha.2019.01.002 DOI |
3. | Phase retrieval of real-valued signals in a shift-invariant space Author: Yang Chen, Cheng Cheng, Qiyu Sun, Haichao Wang Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, Vol., , DOI:10.1016/j.acha.2018.11.002 DOI |
4. | An edge driven wavelet frame model for image restoration Author: Jae Kyu Choi, Bin Dong, Xiaoqun Zhang Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2018, Vol., , DOI:10.1016/j.acha.2018.09.007 DOI |
5. | Extension principles for affine dual frames in reducing subspaces Author: Yun-Zhang Li, Jian-Ping Zhang Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, Vol.46, 177-191, DOI:10.1016/j.acha.2017.11.006 DOI |
6. | Strichartz estimate of the solutions for the free fractional Schrödinger equation with spatial variable coefficient Author: Jian Zhai, Bowen Zheng Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, Vol.46, 207-225, DOI:10.1016/j.acha.2017.05.002 DOI |
7. | Fast and provable algorithms for spectrally sparse signal reconstruction via low-rank Hankel matrix completion Author: Jian-Feng Cai, Tianming Wang, Ke Wei Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2017, Vol.46, 94-121, DOI:10.1016/j.acha.2017.04.004 DOI |
8. | Wavelet inpainting with the ? 0 sparse regularization Author: zxying Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016. |
9. | Kernel-based sparse regression with the correntropy-induced loss Author: Yulong Wang Journal: Applied and Computational Harmonic Analysis, 2016. |
10. | Adaptive frame-based color image denoising Author: yshen Journal: APPLIED AND COMPUTATIONAL HARMONIC ANALYSIS, 2016. |